Technology Infusions

Space Missions

Implemented

Directly deposited optical blocking filters flying on OSIRIS-REX/OSIRIS-APEX • High-precision mirror-shell alignment and mounting used for IXPE • Si-thermistor/HgTe microcalorimeter array flew on Hitomi and flying on XRISM • Phasemeter flying on GRACE Follow-On • UV coatings flying on GOLD and ICON • High-Energy Replicated Optics contributed to IXPE and SRG (ART-XC) optics • Adiabatic Demagnetization Refrigerator (ADR) flew on Hitomi and flying on XRISM • APD-funded MCPs flying on ICON, GOLD, Juno, JUICE, and Solar Orbiter • X-Ray test processes and techniques used for IXPE and SRG (ART-XC) • Slumped-glass X-ray mirrors flying on NuSTAR

Upcoming

Multi-star Wavefront Sensing and Control to fly on RST • Charge Management Device developed as NASA contribution for LISA • Protected enhanced LiF (eLiF) mirror coatings and MCP anti-coincidence shielding to fly on SPRITE • Electron-beam-lithography-ruled gratings to be flown on MANTIS • ALD UV coatings to fly on SPRITE, Aspera, and UVEX • Multilayer AI dielectric filters for UV detectors to fly on SPARCS • Delta-doped SRI 4kx4k CMOS image sensors to fly on UVEX • Wavefront Control with two DMs baselined for RST • TES Microcalorimeter arrays and Time-Domain Multiplexing (TDM) baselined for ATHENA X-IFU • End-to-end Coronagraph models baselined for RST • CMB detectors baselined for LiteBIRD • Telescope developed as NASA contribution for LISA • Advanced CCD detectors baselined by SPARCS • Physical Vapor Deposition in support of ALD UV Coatings to fly on SPRITE and Aspera • H4RG IR detectors baselined for RST • Radiation-Tolerant, Photon-Counting, Visible/near-IR Detectors to fly on DarkNESS and DAVINCI • MCPs planned to fly on SPRITE, Aspera, Europa Clipper, GLIDE, Galileo, and MANTIS • Hybrid Lyot Coronagraph baselined for RST • Timepix2 ASICs to fly on PADRE • Feedhorn-coupled symmetric-OMT architectures adopted by LiteBIRD • Laser technology developed as NASA contribution for LISA

Strategic Concept

Directly deposited optical blocking filters baselined for Lynx • Advanced CCD detector baselined by AXIS and Star-X • Multi-star Wavefront Sensing and Control for HabEx and LUVOIR • PIAACMC Coronagraph for HabEx and LUVOIR • MEMS DMs are baselined for HabEx and LUVOIR • CMB detectors and antenna-coupled detectors baselined for PICO • MCP Anti-coincidence shielding baselined for LUVOIR • Next-gen microshutter arrays baselined for HabEx, LUVOIR, and CETUS • Linear wavefront control for HabEx and LUVOIR • Predictive wavefront control and sensor fusion for HabEx and LUVOIR • Avalanche Photodiode HgCdTe near-IR detectors baselined for HabEx and LUVOIR • Delta-doped SRI 4kx4k CMOS image sensors baselined by CASTOR • Starshade technologies baselined for Starshade-RST Rendezvous Probe • CMB detectors baselined for PICO • FPGA-based readout electronics for superconducting arrays baselined for PICO, Origins, GEP, and Cosmic Dawn • Low-blaze-angle grating baselined by ESCAPE • Delta-doped EMCCDs baselined for HabEx • Delta-doped CMOS detector arrays baselined for LUVOIR • Critical-Angle-Transmission (CAT) X-ray gratings baselined for Lynx • Thermal oxide coating-stress compensation for Lynx, AXIS, and TAP mirrors • Vortex Coronagraph baselined for HabEx and LUVOIR • Cross-strip MCP detector systems baselined for HabEx, LUVOIR, and CETUS • MCP detectors baselined for HabEx, LUVOIR, CETUS, ESCAPE, and MAGIC • Electroforming Process Modeling used for MiXO for CubeX • Apodized Pupil Lyot Coronagraph baselined for LUVOIR • Superconducting kilo-pixel far-IR detector architecture baselined for Origins • PTC as pathfinder for zonal thermal control in HabEx • X-Ray test processes and techniques used for MiXO for CubeX • CADR is baselined for Lynx, Origins, PICO, and GEP • Microwave SQUID multiplexers baselined for Lynx and Origins • Time-division SQUID multiplexers baselined for PICO • Single-crystal-silicon X-ray mirrors baselined for Lynx, AXIS, TAP, and STAR-X • Micro-Newton thrusters are baselined for HabEx fine pointing and jitter suppression

Infusion-Ready (TRL 5)

Ultrasensitive Far-IR KID Arrays • Fast X-ray Event Recognition • Single-photon-sensing and photon-number-resolving detector

Sounding Rockets

Implemented

Electroformed X-ray mirror shells flew on FOXSI-4 • High-precision mirror shell alignment and mounting used by FOXSI-4 • Electroformed X-ray mirror shells flew on MaGIXS-2 • Image Slicer flew on INFUSE • Next-gen microshutter arrays flew on FORTIS • Single and multilayer coating techniques used by FOXSI-4 • Si-thermistor/HgTe microcalorimeter array flew on XQC • X-ray reflection grating flew on WRXR and tREXS • ALD mirror coating flew on SISTINE • Superlattice-doped detector flew on SHIELDS • Blazed soft-X-ray reflection grating flew on MaGIXS • MCPs flew on FIRE, SLICE, EUNIS, FORTIS, VeSpR, CHESS, SISTINE, INFUSE, and DEUCE • Electroforming Process Modeling used by FOXSI-4 • X-Ray test processes and techniques used by FOXSI-4 • TES microcalorimeters and Time-division SQUID multiplexers flew on Micro-X • Tpx3 CdTe detector flew on FOXSI-4 • DMDs flew on INFUSE

Upcoming

Electroformed X-ray mirror shells to fly on REDSoX • Electron-beam-lithography-ruled gratings to fly on OAxFORTIS and MOBIUS • Multilayer AI dielectric filters for UV detectors and ALD UV coatings to fly on FLUID • X-ray reflection gratings to be flown on OGRE • Far-UV coatings to fly on FORTIS • X-ray CAT grating baselined for REDSoX • Next-gen microshutter arrays to fly on OAxFORTIS • MCP detectors to fly on MOBIUS, FORTIS, and FLUID • Single-crystal silicon X-ray mirrors to be flown on OGRE

Balloons

Implemented

Antenna-coupled detectors flew on SPIDER • 4.7 THz local oscillator flew on STO-2 and GUSTO • Heterodyne detectors flew on STO-2 • Heterodyne-detector-related C&DH and ASIC flew on HASP • Advanced CCD detectors flew on FIREBall 2 • Broadband Light Rejection with Optical Vortex Coronagraph flew on PICTURE-C • Far-IR large-format detectors flew on PIPER • Time-division SQUID multiplexers flew on SPIDER and PIPER • TiN KIDs were integrated into BLAST-TNG

Upcoming

Microwave SQUID multiplexer firmware and parameters baselined for DR. TES • Setup for Ultra-Sensitive Bolometers to fly on TIM • Far-IR heterodyne technology to fly on ASTHROS • RFSoC readout baselined for EXCLAIM, PUEO, and TIM • Low-loss transmission lines and micromachined packaging and Absorptive mixtures and glint reduction coatings to be implemented on EXCLAIM

Airborne

Implemented

flew on SOFIA

Upcoming

IF Board to be flown in ONR airborne KID instrument

Ground-Based

Implemented

Microwave SQUID multiplexer crosstalk avoidance implemented at Simons Observatory • Antenna-coupled detectors were deployed on BICEP2, BICEP3/Keck, and BICEP Array • Near-IR LmAPD implemented in U Hawaii 2.2m telescope ULBCam • Ultra-Sensitive Bolometers were deployed at Kitt's Peak • Linear Wavefront Control deployed to Subaru Observatory • Mandrel used to form NIF X-ray microscope optic • RFSoC readout used in Toltec camera at LMT • Spectrograph and Wavefront Control Architectures were deployed on Keck Planet Imager and Characterizer • Delta-doped CCDs placed at Palomar-WaSP and ZTF as permanent facilities • DMDs were deployed on the 4.1-m SOAR Telescope • Electroformed X-ray mirror shell techniques used for NIST Neutron Microscope optics • Vortex coronagraph deployed to Palomar, Keck, and Subaru Observatories • TES bolometers used in the IRAM bolometer camera at the IRAM 30m Telescope • Microwave SQUID multiplexers deployed on GBT MUSTANG2 and Simons Observatory • OMT-coupled TES bolometers deployed on ABS, ACTPol, AdvancedACT, ALI-CPT, GBT MUSTANG2, SPTPol, and Simons Observatory • TES bolometers deployed on JCMT SCUBA2 • Time-division SQUID multiplexers deployed on ABS, ACT, ACTPol, AdvancedACT, BICEP2, BICEP3/Keck, and JCMT SCUBA2 • TiN KIDs were deployed on Toltec Camera at LMT • Feedhorn-coupled symmetric-OMT architectures implemented on ABS, ACTPol, Advanced ACTPol, CLASS, and Simons Observatory • Feedhorn-coupled symmetric-OMT focal planes and absorptive mixtures and glint reduction coatings deployed on CLASS

Upcoming

Next generation Near-IR LmAPD implemented in Subaru Observatory • AstroPix CMOS Monolithic Active Pixel Sensors to be implemented at the Electron-Proton/Ion Collider (ePIC) at BNL • RFSoC readout to be used in Toltec camera at CCAT-prime • GISMO to be deployed to GLT • OMT-coupled TES bolometers baselined for CMB-S4 • EPRV etalon to be deployed on Keck Planet Finder • Feedhorn-coupled symmetric-OMT architectures adopted by CMB-S4

APD's technology development investments have advanced TRLs of dozens of technologies, and led to 160 infusions and over 60 potential infusions into space, suborbital, and ground-based missions and projects.

TES Bolometers for the HAWC+ flew on SOFIA • Time-division SQUID multiplexers for the HAWC+ flew on SOFIA • Absorptive mixtures and glint reduction coatings for HAWC+

